Prepared by: Dredged Material Management Office Seattle District, US Army Corps of Engineers

#### **Memorandum for Record**

February 12, 2024

Subject: Suitability Determination for the USACE Navigation Operations & Maintenance Dredging of the Swinomish Federal Channel, Skagit County, Washington.

#### Introduction

This suitability determination memorandum (SDM) documents the consensus regarding the suitability of the proposed dredged material for unconfined aquatic disposal as determined by the Dredged Material Management Program (DMMP) agencies (U.S. Army Corps of Engineers, Washington Departments of Ecology and Natural Resources, and the U.S. Environmental Protection Agency).

### **Project Description**

The Swinomish Channel is a federally maintained shallow-draft navigation channel, approximately 11-miles long, that connects northern Skagit Bay to Padilla Bay and is utilized by both commercial and recreational boat traffic. The channel is dredged every two to four years to maintain safe and reliable navigation. The full dredge prism includes the authorized depth of -12 mean lower low water (MLLW) plus 2 feet (ft) of potential overdepth for a total channel depth of -14 ft MLLW.

Proposed dredged material settles out from the Skagit River at the southern end of the channel and from Padilla Bay at the northern end of the channel. Tidal fluctuations distribute sediments along the channel bed. This sediment then settles into shoals where flow slows, and forms sand waves where material is mobilized by tidal exchanges. Sediment in the Swinomish Channel consists predominantly of medium to coarse sand.

The 2023 Swinomish Channel dredged material characterization followed a new sampling strategy which was designed to standardize sampling for this site, independent of available volume in a given year (DMMP, 2023). This new strategy separated the channel into four reaches, each representing an area of similar use and typical shoaling: Southern Entrance, Southern Main Channel, Main Channel, and Northern Entrance (Figure 1). The reaches each represent one DMMU and will require, at a minimum, three surface samples targeting current shoals or potential areas of concern in future sampling events.

In critical and/or fast-shoaling areas, USACE may also perform advance maintenance dredging (AMD) to increase the length of time between dredging cycles at critical projects, and avoid redredging fast-shoaling areas in any given cycle. This ensures the least overall cost of maintaining the project. Typical advance maintenance dredging is two feet beyond authorized depth and does not include the 2 ft of overdepth dredging. Thus, the total allowable dredging depth for Swinomish Channel routine maintenance dredging (when including AMD) is -12 feet + 2 ft AMD + 2 ft OverDepth (OD) (-16 ft MLLW).

## **Project Summary**

| Waterbody                                                                | Swinomish Channel                        |
|--------------------------------------------------------------------------|------------------------------------------|
| Water classification                                                     | Estuarine (Marine Evaluation Procedures) |
| Project rank                                                             | Project-specific: Low, Homogenous        |
| Total proposed dredging volume (cy)                                      | Up to 400,000 cy per dredge event        |
| Authorized dredging depth                                                | - 12 feet MLLW                           |
| Max. proposed dredging depth (includes 2 feet allowed OD and 2 feet AMD) | - 16 feet MLLW                           |

| Proposed disposal location(s)                                 | DMMP open-water dispersive and/or non-<br>dispersive disposal sites, or approved in-water<br>beneficial use or upland placement |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Dredged Material Management Units (DMMUs):<br>No. of stations | 4 DMMUs: 24 grab samples                                                                                                        |
| DMMO tracking number                                          | SWINC-1-A-F-453                                                                                                                 |
| EIM Study ID                                                  | SWINC23                                                                                                                         |
| USACE Reference Number                                        | PMP-18-15                                                                                                                       |
| Sampling and Analysis Plan (SAP) Approval Date                | August 2023 (EcoAnalysts, 2023)                                                                                                 |
| Sampling Date                                                 | September 1, 2023                                                                                                               |
| Sediment Characterization Report Approval Date                | February 2024 (EcoAnalysts, 2024)                                                                                               |
| Testing Parameters                                            | DMMP standard marine COCs                                                                                                       |
| Biological Testing                                            | Not required                                                                                                                    |
| Recency Expiration (10 Years)                                 | September 2033                                                                                                                  |
|                                                               | All material found suitable for in-water                                                                                        |
| Suitability Outcome                                           | placement; beneficial use of material subject to                                                                                |
|                                                               | other permitting authorities                                                                                                    |
| Antidegradation Assessment                                    | In compliance                                                                                                                   |

# **Sampling and Analysis Description**

Power grab sampling was conducted on September 1, 2023, from a contracted sampling vessel provided by Research Support Services, Inc. (RSS). Samples were collected from 24 stations within shoals identified in a March 2023 bathymetric survey (Table 1). Horizontal station positioning was accomplished using a Trimble R1 and TerraSync data logger software. The antenna for the Global Positioning System (GPS) receiver was located at the top of the A-frame in the bow and directly above the sampling location. Vertical positioning was determined using the NOAA La Connor Station (9448558), except for the Northern Entrance samples, which used the NOAA Swinomish Channel Entrance Padilla Bay Station (9448682). The sampling crew was not able to locate tide boards in the Swinomish Channel to correct the tide height, so mudline elevations are estimated.

Samples were composited on the vessel and submitted to Analytical Resource, Inc. and Eurofins for physical and chemical analysis.

Tables 2 through 5 provide the sample collection details. Figures 2 through 17 show the actual sampling locations. All samples were collected within 10ft of the target location except for SM-01, which was 15ft from target.

#### **Data Validation**

EcoChem conducted an EPA Stage 2B review and validation of all DMMP chemistry data. The validation process resulted in some additional J and UJ qualified data (estimated values) and U qualified data (associated with method blank detections) beyond those assigned by the lab, based on specified protocol or technical advisory. Due to laboratory quality assurance/quality control (QA/QC) issues, some analyses were re-extracted and/or re-analyzed to meet project data quality objectives (DQOs). In these instances, the data associated with passing QA/QC were used and the original results were qualified as "Do Not Report" to provide just one reportable result per sample parameter. Completeness was 100%; all reported data are usable as qualified.

Table 6 provides definitions of the various qualifiers used by the laboratory and data validator.

#### **Analytical Testing Results**

Grain size results showed predominately sand (84-99%) and low fines (1.3 to 16.1%). TOC results were all below 0.5%. Tables 7 and 8 summarize the analytical results for the 4 DMMUs alongside the DMMP marine guidance (DMMP, 2021) and marine Apparent Effects Thresholds [AETs], respectively.

Samples had non-detects or very low concentrations of COCs. There were no detected or non-detected exceedances of the marine screening levels or AETs.

#### **DMMP Determinations**

#### **Suitability Determination**

The DMMP agencies have concluded that all characterized material from the Swinomish Navigation Channel is suitable for open-water disposal at a dispersive or non-dispersive DMMP disposal site, or at an approved beneficial use site.

Removal of sediment within the characterized dredging prism of up to 400,000 cy per year is authorized as long as there are no significant changes to the project scope or identification of new contaminant sources. Coordination with the Seattle District DMMO is required prior to each dredging cycle to determine if there are any changed conditions.

The DMMP does not make specific beneficial use determinations. However, these data are available for the assessment of project-specific beneficial use by the project proponent, permitting agencies, local health jurisdictions and/or the owner of a receiving property.

#### **Recency Determination**

This suitability determination is valid through September 2033 (10 years from last previous sampling event). A Tier 1 analysis (review of current information) must be done prior to every dredge event to evaluate whether conditions have changed for any part of the channel. Changes could include spills, potential new contaminant sources, or addition of new chemicals of concern. A sampling event or project modification will be pursued as necessary should the Tier 1 evaluation indicate the need for more information in any part of the channel.

#### **Antidegradation Determination**

The sediment to be exposed by dredging must either meet the State of Washington Sediment Management Standards (SMS) or the State's Antidegradation Standard (Ecology, 2013) as outlined by DMMP guidance (DMMP, 2008). Concentrations of all DMMP chemicals of concern were below the DMMP SLs, and there is no reason to believe that a new exposed surface would be contaminated relative to the overlying materials; therefore, this project is in compliance with the State of Washington Antidegradation Standard.

#### **Debris Management**

Based on project history, site location, dredging frequency, and results of this sediment characterization, the DMMP did not identify a reason-to-believe that debris might be a significant concern or require any specific debris assessment or management practices/techniques for use on this project. This issue may be revisited in subsequent years via DMMP coordination, should new information arise that indicates debris could be a concern at this location.

#### **Notes and Clarifications**

The decisions documented in this memorandum do **not** constitute final agency approval of the project. During the public comment period that follows a public notice, resource agencies will provide input on the overall project. A final decision will be made after full consideration of agency input, and after an alternatives analysis is done under section 404(b)(1) of the Clean Water Act.

#### References

- DMMP, 2008. *Quality of Post-Dredge Sediment Surfaces (Updated)*. A Clarification Paper Prepared by David Fox (USACE), Erika Hoffman (EPA) and Tom Gries (Ecology) for the Dredged Material Management Program, June 2008.
- DMMP, 2021. *Dredged Material Evaluation and Disposal Procedures (User Manual)*. Dredged Material Management Program, July 2021.
- DMMP, 2023. *DMMP Ranking Revision Determination for Characterization of the Swinomish Federal Navigation Channel*. Prepared by the Dredged Material Management Program, 29 June 2023.
- EcoAnalysts, 2023. Swinomish Federal Navigation Channel, Sampling and Analysis Plan, Skagit County, WA. Final Plan submitted to the USACE, August 2023.
- EcoAnalysts, 2023. Swinomish Federal Navigation Channel Dredged Material Characterization Report, Skagit County, WA. Final Report submitted to the USACE, February 2024.
- Ecology, 2013. *Sediment Management Standards Chapter 173-204 WAC*. Washington State Department of Ecology, February 2013.

# **Agency Signatures**

The signed copy is on file in the Dredged Material Management Office, Seattle District U.S. Army Corps of Engineers

| Date     | Joy Dunay – U.S. Army Corps of Engineers, Seattle District       |
|----------|------------------------------------------------------------------|
| Date     | Justine Barton – U.S. Environmental Protection Agency, Region 10 |
| Date     | Laura Inouye, PhD. – Washington State Department of Ecology      |
| <br>Date | Shannon Soto – Washington State Department of Natural Resources  |

# **Copies Furnished:**

DMMP agencies Heather Fourie, USACE Navigation PM Regina Edwards, EcoAnalysts DMMO File

# **Tables**

Table 1 DMMU and Sample Requirements

| Reach                     | Rank | Type of Material | Estimated volume (cy) | # Grab<br>Samples | # DMMUs |
|---------------------------|------|------------------|-----------------------|-------------------|---------|
| Southern Entrance         | Low  | homogenous       | 44,500                | 3                 | 1       |
| Southern Main Channel     | Low  | homogenous       | 8,296                 | 5                 | 1       |
| Main Channel              | Low  | homogenous       | 33,373                | 8                 | 1       |
| Northern Entrance Channel | Low  | homogenous       | 34,878                | 8                 | 1       |
| Tot                       | tals |                  | 121,047               | 24                | 4       |

**Table 2. Actual Station Information** 

| Reach                    | DMMU          | Sample ID | Date     | Time  | Attempt | Latitude  | Longitude   | Northing | Easting | Distance<br>from Target<br>(ft) |
|--------------------------|---------------|-----------|----------|-------|---------|-----------|-------------|----------|---------|---------------------------------|
|                          |               | SE-01     | 09/01/23 | 10:56 | 1 of 1  | 48.361889 | -122.553703 | 501456   | 1222222 | 2                               |
| Southern Entrance        | DMMU-01       | SE-02     | 09/01/23 | 11:16 | 1 of 1  | 48.364010 | -122.544029 | 502178   | 1224591 | 2                               |
|                          |               | SE-03     | 09/01/23 | 11:29 | 1 of 1  | 48.367008 | -122.530006 | 503196   | 1228022 | 6                               |
|                          |               | SM-01     | 09/01/23 | 11:53 | 2 of 2  | 48.369511 | -122.517998 | 504045   | 1230961 | 15                              |
|                          |               | SM-02     | 09/01/23 | 12:02 | 1 of 1  | 48.370831 | -122.511299 | 504491   | 1232599 | 4                               |
| Southern Main<br>Channel | DMMU-02       | SM-03     | 09/01/23 | 12:13 | 1 of 1  | 48.377918 | -122.507919 | 507058   | 1233476 | 2                               |
| Chamilei                 |               | SM-04     | 09/01/23 | 12:23 | 1 of 1  | 48.381630 | -122.506920 | 508405   | 1233749 | 0                               |
|                          |               | SM-05     | 09/01/23 | 12:32 | 1 of 1  | 48.385098 | -122.505379 | 509663   | 1234151 | 4                               |
|                          |               | MC-01     | 09/01/23 | 13:22 | 1 of 1  | 48.400005 | -122.496849 | 515055   | 1236340 | 6                               |
|                          |               | MC-02     | 09/01/23 | 13:34 | 1 of 1  | 48.406136 | -122.496567 | 517289   | 1236458 | 4                               |
|                          |               | MC-03     | 09/01/23 | 13:44 | 1 of 1  | 48.409744 | -122.496422 | 518604   | 1236521 | 8                               |
| Main Chamal              | DA 48 41 1 02 | MC-04     | 09/01/23 | 13:56 | 1 of 1  | 48.414669 | -122.497971 | 520409   | 1236184 | 4                               |
| Main Channel             | DMMU-03       | MC-05     | 09/01/23 | 14:16 | 2 of 2  | 48.426975 | -122.500458 | 524910   | 1235677 | 4                               |
|                          |               | MC-06     | 09/01/23 | 14:32 | 1 of 1  | 48.430161 | -122.498688 | 526062   | 1236133 | 1                               |
|                          |               | MC-07     | 09/01/23 | 14:51 | 3 of 3  | 48.436646 | -122.500809 | 528440   | 1235668 | 6                               |
|                          |               | MC-08     | 09/01/23 | 15:01 | 1 of 1  | 48.438290 | -122.502090 | 529046   | 1235371 | 2                               |
|                          |               | NE-01     | 09/01/23 | 15:36 | 2 of 2  | 48.454166 | -122.514404 | 534901   | 1232508 | 2                               |
|                          |               | NE-02     | 09/01/23 | 15:44 | 1 of 1  | 48.456573 | -122.514580 | 535781   | 1232485 | 2                               |
|                          |               | NE-03     | 09/01/23 | 15:52 | 1 of 1  | 48.460678 | -122.516472 | 537288   | 1232059 | 5                               |
| Nonth our Future         | DN4N411 04    | NE-04     | 09/01/23 | 16:06 | 1 of 1  | 48.468189 | -122.522537 | 540059   | 1230648 | 3                               |
| Northern Entrance        | DMMU-04       | NE-05     | 09/01/23 | 16:20 | 1 of 1  | 48.478214 | -122.530464 | 543758   | 1228807 | 4                               |
|                          |               | NE-06     | 09/01/23 | 16:32 | 1 of 1  | 48.483925 | -122.534981 | 545864   | 1227756 | 7                               |
|                          |               | NE-07     | 09/01/23 | 16:54 | 1 of 1  | 48.496521 | -122.545029 | 550513   | 1225423 | 6                               |
|                          |               | NE-08     | 09/01/23 | 17:10 | 1 of 1  | 48.506031 | -122.552818 | 554023   | 1223613 | 1                               |

**Table 3. Sample Information** 

| Reach                    | DMMU        | Sample<br>ID | Estimated<br>Mudline<br>Elevation<br>(MLLW) | Water<br>Depth (ft) | Tidal<br>Stage<br>(ft) <sup>1</sup> | Actual<br>Mudline<br>(MLLW) | Penetration<br>(cm) | Volume<br>Collected<br>(L) |
|--------------------------|-------------|--------------|---------------------------------------------|---------------------|-------------------------------------|-----------------------------|---------------------|----------------------------|
|                          |             | SE-01        | -9                                          | 7.0                 | 1.8                                 | -5.2                        | 27                  | 3                          |
| Southern<br>Entrance     | DMMU-01     | SE-02        | -7                                          | 8.3                 | 1.1                                 | -7.2                        | 24                  | 3                          |
|                          |             | SE-03        | -13                                         | 12.8                | 0.7                                 | -12.1                       | 19                  | 3                          |
|                          |             | SM-01        | -11                                         | 12.6                | -0.1                                | -12.7                       | 24                  | 2                          |
|                          |             | SM-02        | -11                                         | 13.5                | -0.2                                | -13.7                       | 21                  | 2                          |
| Southern<br>Main Channel | DMMU-02     | SM-03        | -10                                         | 12.5                | -0.5                                | -13.0                       | 13                  | 2                          |
|                          |             | SM-04        | -13                                         | 13.0                | -0.6                                | -13.6                       | 15                  | 2                          |
|                          |             | SM-05        | -8                                          | 8.1                 | -0.8                                | -8.9                        | 22                  | 2                          |
|                          |             | MC-01        | -11                                         | 13.2                | -0.7                                | -13.9                       | 23                  | 1                          |
|                          |             | MC-02        | -8                                          | 11.6                | -0.5                                | -12.1                       | 24                  | 1                          |
|                          |             | MC-03        | -7                                          | 7.8                 | -0.5                                | -8.3                        | 25                  | 1                          |
| Main Channel             | DMMU-03     | MC-04        | -8                                          | 11.9                | 0.0                                 | -11.9                       | 22                  | 1                          |
| Main Channel             | DIVIIVIO-03 | MC-05        | -9                                          | 13.8                | 0.4                                 | -13.4                       | 17                  | 1                          |
|                          |             | MC-06        | -13                                         | 15.0                | 1.0                                 | -14.0                       | 19                  | 1                          |
|                          |             | MC-07        | -8                                          | 13.2                | 1.7                                 | -11.5                       | 15                  | 1                          |
|                          |             | MC-08        | -8                                          | 14.1                | 2.1                                 | -12.0                       | 15                  | 1                          |
|                          |             | NE-01        | -7                                          | 13.8                | 3.6                                 | -10.2                       | 16                  | 1.5                        |
|                          |             | NE-02        | -11                                         | 18.6                | 3.8                                 | -14.8                       | 24                  | 1.5                        |
|                          |             | NE-03        | -8                                          | 12.6                | 4.2                                 | -8.4                        | 21                  | 1.5                        |
| Northern                 | DMMU-04     | NE-04        | -10                                         | 15.0                | 4.5                                 | -10.5                       | 25                  | 1.5                        |
| Entrance                 | טואוואוט-ט4 | NE-05        | -10                                         | 15.8                | 5.0                                 | -10.8                       | 21                  | 1.5                        |
|                          |             | NE-06        | -11                                         | 18.1                | 5.4                                 | -12.7                       | 21                  | 1.5                        |
|                          |             | NE-07        | -13                                         | 20.8                | 6.1                                 | -14.7                       | 26                  | 1.5                        |
|                          |             | NE-08        | -11                                         | 19.3                | 6.6                                 | -12.7                       | 17                  | 1.5                        |

<sup>&</sup>lt;sup>1</sup> Northern Entrance tide height taken from Swinomish Channel Entrance Padilla Bay tide station, all other reaches taken from the La Connor tide station

**Table 4. DMMU Composite Plan and Chemical Analysis** 

|                          |             |              | Physical & Cher           | nical Analysis | Archive       | Samples  |
|--------------------------|-------------|--------------|---------------------------|----------------|---------------|----------|
| Reach                    | DMMU        | Sample<br>ID | Sediment<br>Conventionals | DMMP COC       | DMMU<br>Comp. | Bioassay |
|                          |             | SE-01        |                           |                |               |          |
| Southern Entrance        | DMMU-01     | SE-02        | Х                         | Х              | Х             | Х        |
|                          |             | SE-03        |                           |                |               |          |
|                          |             | SM-01        |                           |                |               |          |
| Cauthan Main             |             | SM-02        |                           |                |               |          |
| Southern Main<br>Channel | DMMU-02     | SM-03        | Х                         | Х              | Х             | Х        |
| Chamer                   |             | SM-04        |                           |                |               |          |
|                          |             | SM-05        |                           |                |               |          |
|                          |             | MC-01        |                           |                |               |          |
|                          |             | MC-02        | x                         |                |               |          |
|                          |             | MC-03        |                           |                |               |          |
| Main Channel             | DMMU-03     | MC-04        |                           | X              | X             | x        |
| Iviaiii Ciiaiiilei       | DIVIIVIO-03 | MC-05        |                           | ^              | ^             | ^        |
|                          |             | MC-06        |                           |                |               |          |
|                          |             | MC-07        |                           |                |               |          |
|                          |             | MC-08        |                           |                |               |          |
|                          |             | NE-01        |                           |                |               |          |
|                          |             | NE-02        |                           |                |               |          |
|                          |             | NE-03        |                           |                |               |          |
| Northern Entrance        | DNANALL 04  | NE-04        | x                         | v              | V             | v        |
| Northern Entrance        | DMMU-04     | NE-05        | X                         | X              | Х             | X        |
|                          |             | NE-06        |                           |                |               |          |
|                          |             | NE-07        |                           |                |               |          |
|                          |             | NE-08        |                           |                |               |          |

**Table 5. Comprehensive Sampling Attempts** 

| Reach         | DMMU        | Sample ID | Attempt | Volume<br>Collected (L) | Notes                                                       |  |  |  |  |  |  |
|---------------|-------------|-----------|---------|-------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
|               |             | SE-01     | 1 of 1  | 3                       | Fine sand with some clay. Seaweed present                   |  |  |  |  |  |  |
| Southern      | DMMU-01     | SE-02     | 1 of 1  | 3                       | Medium sand                                                 |  |  |  |  |  |  |
| Entrance      | J0 0 2      | SE-03     | 1 of 1  | 3                       | Fine and medium sand. Large and small sticks in grab        |  |  |  |  |  |  |
|               |             | SM-01     | 1 of 2  | 0                       | Grab malfunctioned                                          |  |  |  |  |  |  |
|               |             | SM-01     | 2 of 2  | 2                       | Medium to coarse sand                                       |  |  |  |  |  |  |
| Southern Main | DMMU-02     | SM-02     | 1 of 1  | 2                       | Medium to coarse sand                                       |  |  |  |  |  |  |
| Channel       | DIVIIVIO-02 | SM-03     | 1 of 1  | 2                       | Fine and medium sand                                        |  |  |  |  |  |  |
|               |             | SM-04     | 1 of 1  | 2                       | Fine and medium sand                                        |  |  |  |  |  |  |
|               |             | SM-05     | 1 of 1  | 2                       | Fine to medium sand                                         |  |  |  |  |  |  |
|               |             | MC-01     | 1 of 1  | 1                       | Medium to coarse sand with some sticks. Fish present        |  |  |  |  |  |  |
|               |             | MC-02     | 1 of 1  | 1                       | Medium to coarse sand                                       |  |  |  |  |  |  |
|               |             | MC-03     | 1 of 1  | 1                       | Medium to coarse sand                                       |  |  |  |  |  |  |
|               |             | MC-04     | 1 of 1  | 1                       | Fine to medium sand                                         |  |  |  |  |  |  |
|               |             | MC-05     | 1 of 2  | 0                       | Rock in grab jaws                                           |  |  |  |  |  |  |
| Main Channel  | DMMU-03     | MC-05     | 2 of 2  | 1                       | Fine sand with wood debris and shell hash                   |  |  |  |  |  |  |
| Wall Charles  | Bivillo 05  | MC-06     | 1 of 1  | 1                       | Fine to medium sand                                         |  |  |  |  |  |  |
|               |             | MC-07     | 1 of 3  | 0                       | Grab malfunctioned                                          |  |  |  |  |  |  |
|               |             | MC-07     | 2 of 3  | 0                       | Grab malfunctioned                                          |  |  |  |  |  |  |
|               |             | MC-07     | 3 of 3  | 1                       | Fine, medium, and coarse sand with shell hash. Fish present |  |  |  |  |  |  |
|               |             | MC-08     | 1 of 1  | 1                       | Fine to medium sand with wood debris. Fish present          |  |  |  |  |  |  |
|               |             | NE-01     | 1 of 2  | 0                       | Grab malfunctioned                                          |  |  |  |  |  |  |
|               |             | NE-01     | 2 of 2  | 1.5                     | Fine sand with a little shell hash                          |  |  |  |  |  |  |
| Northern      | DMMU-04     | NE-02     | 1 of 1  | 1.5                     | Fine sand with shell hash. Wood debris                      |  |  |  |  |  |  |
| Entrance      |             | NE-03     | 1 of 1  | 1.5                     | Fine to medium sand with shell hash                         |  |  |  |  |  |  |
|               |             | NE-04     | 1 of 1  | 1.5                     | Fine to medium sand                                         |  |  |  |  |  |  |
|               |             | NE-05     | 1 of 1  | 1.5                     | Very fine sand                                              |  |  |  |  |  |  |
| Northern      |             | NE-06     | 1 of 1  | 1.5                     | Very fine sand. Tube worms present                          |  |  |  |  |  |  |
| Entrance      | DMMU-04     | NE-07     | 1 of 1  | 1.5                     | Silty sand. Tube worms & polychaetes present                |  |  |  |  |  |  |
|               |             | NE-08     | 1 of 1  | 1.5                     | Sandy silt. Shrimp & polychaete present                     |  |  |  |  |  |  |

**Table 6. Laboratory and Validator Qualifier Definitions** 

| Laborat  | ory Qualifier Definitions                                                                                                            |                                        |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| J        | Results is less than the RL but greater that approximate value.                                                                      | nan or equal to                        | the MDL and the concentration is an                                                                            |  |  |  |  |  |  |  |  |  |  |
| U        | Not Detected at the RL (or MDL if show                                                                                               | n).                                    |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| F1       | MS and/or MSD recovery exceeds contr                                                                                                 | ol limits.                             |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| Validate | or Qualifier Definitions                                                                                                             |                                        |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| U        | The analyte was analyzed but was not detected above the reported sample quantitation limit.                                          |                                        |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. |                                        |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| UJ       |                                                                                                                                      | ay or may not                          | nple quantitation limit. However, the reported represent the actual limit of quantitation alyte in the sample. |  |  |  |  |  |  |  |  |  |  |
| Abbrevi  | ations                                                                                                                               |                                        |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| SL       | Screening Level                                                                                                                      | MDL                                    | Method Detection Limit                                                                                         |  |  |  |  |  |  |  |  |  |  |
| ВТ       | Bioaccumulation Trigger                                                                                                              | μg/kg                                  | microgram/kilogram                                                                                             |  |  |  |  |  |  |  |  |  |  |
| ML       | Maximum Level                                                                                                                        | 1aximum Level mg/kg milligram/kilogram |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| RL       | Reporting Limit                                                                                                                      | SCO                                    | Sediment Cleanup Objective                                                                                     |  |  |  |  |  |  |  |  |  |  |
| VQ       | Validated Qualifier                                                                                                                  | CSL                                    | Cleanup Screening Level                                                                                        |  |  |  |  |  |  |  |  |  |  |

Table 7. Sediment Conventionals and Analytical COC Results compared to DMMP Guidelines

| Table 7. Sediment Conventiona   | DMMP Marine Guidelines DMMU-01 |       |        |        |       |        |     |        | DM     | MU-02 |        |     |        | D      | MMU-03 |        |     | DMMU-04 |        |       |        |      |        |
|---------------------------------|--------------------------------|-------|--------|--------|-------|--------|-----|--------|--------|-------|--------|-----|--------|--------|--------|--------|-----|---------|--------|-------|--------|------|--------|
| Parameter                       |                                |       |        |        |       |        | Qua | lifier |        |       |        | Qua | lifier |        |        |        | Qua | lifier  |        |       |        | Qual | lifier |
|                                 | SL                             | ВТ    | ML     | Result | RL    | MDL    | Lab | VQ     | Result | RL    | MDL    | Lab | VQ     | Result | RL     | MDL    | Lab | VQ      | Result | RL    | MDL    | Lab  | VQ     |
| SEDIMENT CONVENTIONALS          |                                |       |        |        |       |        |     |        |        |       |        |     |        |        |        |        |     |         |        |       |        |      |        |
| Total solids (%)                |                                |       |        | 65.15  | 0.04  | 0.04   |     |        | 81.31  | 0.04  | 0.04   |     |        | 76.98  | 0.04   | 0.04   |     |         | 71.59  | 0.04  | 0.04   |      |        |
| Total volatile solids (TVS) (%) |                                |       |        | 1.82   | 0.01  | 0.01   |     |        | 0.83   | 0.01  | 0.01   |     |        | 0.89   | 0.01   | 0.01   |     |         | 1.48   | 0.01  | 0.01   |      |        |
| Total organic carbon (%)        |                                |       |        | 0.45   | 0.20  | 0.0097 |     |        | 0.13   | 0.20  | 0.0097 | J   | U      | 0.12   | 0.20   | 0.0097 | J   | U       | 0.28   | 0.20  | 0.0097 |      | U      |
| Total Sulfides (mg/kg)          |                                |       |        | 58.0   | 6.92  | 6.92   |     | J      | 1.23   | 1.23  | 1.23   | U   | UJ     | 1.19   | 1.19   | 1.19   | U   | UJ      | 48.4   | 6.95  | 6.95   |      | J      |
| Ammonia (mg/kg NH3-N)           |                                |       |        | 34     | 34    | 14     | U   | UJ     | 32     | 32    | 13     | U   | UJ     | 31     | 31     | 13     | U   | UJ      | 35     | 35    | 14     | U F1 | UJ     |
| Particle/Grain Size, Gravel (%) |                                |       |        | 0.10   |       |        |     |        | 0.20   |       |        |     |        | 1.0    |        |        |     |         | 0.20   |       |        |      |        |
| Particle/Grain Size, Sand (%)   |                                |       |        | 84     |       |        |     |        | 99     |       |        |     |        | 98     |        |        |     |         | 90     |       |        |      |        |
| Particle/Grain Size, Silt (%)   |                                |       |        | 13     |       |        |     |        | 0.40   |       |        |     |        | 0.30   |        |        |     |         | 7.8    |       |        |      |        |
| Particle/Grain Size, Clay (%)   |                                |       |        | 3.1    |       |        |     |        | 0.90   |       |        |     |        | 1.1    |        |        |     |         | 2.4    |       |        |      |        |
| Percent Fines (Silt + Clay)     |                                |       |        | 16.1   |       |        |     |        | 1.3    |       |        |     |        | 1.4    |        |        |     |         | 10.2   |       |        |      |        |
| METALS (mg/kg dry weight)       |                                |       |        |        |       |        |     |        |        |       |        |     |        |        |        |        |     |         |        |       |        |      |        |
| Antimony                        | 150                            |       | 200    | 0.11   | 0.24  | 0.027  | J   | J      | 0.090  | 0.25  | 0.028  | J   | J      | 0.082  | 0.22   | 0.025  | J   | J       | 0.099  | 0.31  | 0.035  | J    | J      |
| Arsenic                         | 57                             | 507.1 | 700    | 3.8    | 0.20  | 0.039  |     |        | 3.3    | 0.21  | 0.042  |     |        | 2.4    | 0.19   | 0.037  |     |         | 4.5    | 0.26  | 0.052  |      |        |
| Cadmium                         | 5.1                            |       | 14     | 0.054  | 0.31  | 0.030  | J   | J      | 0.034  | 0.33  | 0.032  | J   | J      | 0.30   | 0.30   | 0.029  | U   | U       | 0.088  | 0.42  | 0.040  | J    | J      |
| Chromium                        | 260                            |       |        | 20     | 0.39  | 0.025  |     |        | 21     | 0.42  | 0.026  |     |        | 16     | 0.37   | 0.024  |     |         | 25     | 0.52  | 0.033  |      |        |
| Copper                          | 390                            |       | 1,300  | 9.0    | 0.39  | 0.087  |     |        | 6.4    | 0.42  | 0.092  |     |        | 5.3    | 0.37   | 0.082  |     |         | 8.1    | 0.52  | 0.11   |      |        |
| Lead                            | 450                            | 975   | 1,200  | 2.1    | 0.20  | 0.019  |     |        | 1.6    | 0.21  | 0.020  |     |        | 1.6    | 0.19   | 0.018  |     |         | 2.2    | 0.26  | 0.025  |      |        |
| Mercury                         | 0.41                           | 1.5   | 2.3    | 0.014  | 0.037 | 0.011  | J   | J      | 0.033  | 0.033 | 0.0099 | U   | U      | 0.027  | 0.027  | 0.0082 | U   | U       | 0.012  | 0.032 | 0.0096 | J    | J      |
| Selenium                        |                                | 3     |        | 0.31   | 0.31  | 0.16   | U   | U      | 0.30   | 0.30  | 0.15   | U   | U      | 0.31   | 0.31   | 0.16   | U   | U       | 0.32   | 0.32  | 0.16   | U    | U      |
| Silver                          | 6.1                            |       | 8.4    | 0.028  | 0.079 | 0.0079 | J   | J      | 0.013  | 0.084 | 0.0084 | J   | J      | 0.075  | 0.075  | 0.0075 | U   | U       | 0.021  | 0.10  | 0.010  | J    | J      |
| Zinc                            | 410                            |       | 3,800  | 27     | 2.0   | 0.63   |     |        | 25     | 2.1   | 0.67   |     |        | 24     | 1.9    | 0.60   |     |         | 32     | 2.6   | 0.84   |      |        |
| ORGANICS                        |                                |       |        |        |       |        |     |        |        |       |        |     |        |        |        |        |     |         |        |       |        |      |        |
| PAHs (μg/kg dry weight)         |                                |       |        |        |       |        |     |        |        |       |        |     |        |        |        |        |     |         |        |       |        |      |        |
| LPAH                            |                                |       |        | 1      | I     | T      |     |        |        |       |        |     | T      |        | 1      |        | I   |         | 1      | T     | T      |      | 1      |
| Naphthalene                     | 2,100                          |       | 2,400  | 19.9   | 19.9  | 4.2    | U   | U      | 20.0   | 20.0  | 4.2    | U   | U      | 20.0   | 20.0   | 4.2    | U   | U       | 20.0   | 20.0  | 4.2    | U    | U      |
| Acenaphthylene                  | 560                            |       | 1,300  | 19.9   | 19.9  | 6.2    | U   | U      | 20.0   | 20.0  | 6.2    | U   | U      | 20.0   | 20.0   | 6.2    | U   | U       | 20.0   | 20.0  | 6.2    | U    | U      |
| Acenaphthene                    | 500                            |       | 2,000  | 19.9   | 19.9  | 5.2    | U   | U      | 20.0   | 20.0  | 5.2    | U   | U      | 20.0   | 20.0   | 5.2    | U   | U       | 6.4    | 20.0  | 5.2    | J    | J      |
| Fluorene                        | 540                            |       | 3,600  | 19.9   | 19.9  | 14.5   | U   | U      | 20.0   | 20.0  | 14.6   | U   | U      | 20.0   | 20.0   | 14.6   | U   | U       | 20.0   | 20.0  | 14.6   | U    | U      |
| Phenanthrene                    | 1,500                          |       | 21,000 | 19.9   | 19.9  | 8.7    | U   | U      | 20.0   | 20.0  | 8.7    | U   | U      | 20.0   | 20.0   | 8.7    | U   | U       | 20.0   | 20.0  | 8.7    | U    | U      |
| Anthracene                      | 960                            |       | 13,000 | 19.9   | 19.9  | 7.2    | U   | U      | 20.0   | 20.0  | 7.2    | U   | U      | 20.0   | 20.0   | 7.2    | U   | U       | 12.4   | 20.0  | 7.2    | J    | J      |

Table 7. Sediment Conventionals and Analytical COC Results compared to DMMP Guidelines

|                              | DMMP         | Marine Gui | delines |        | DMMU-01 |      |     |        |        | DMMU-02 |      |      |        |        |      | MMU-03 |     |        | DMMU-04 |      |      |      |        |  |
|------------------------------|--------------|------------|---------|--------|---------|------|-----|--------|--------|---------|------|------|--------|--------|------|--------|-----|--------|---------|------|------|------|--------|--|
| Parameter                    |              |            |         |        |         |      | Qua | lifier |        |         |      | Qual | lifier |        |      |        | Qua | lifier |         |      |      | Qual | lifier |  |
|                              | SL           | ВТ         | ML      | Result | RL      | MDL  | Lab | VQ     | Result | RL      | MDL  | Lab  | VQ     | Result | RL   | MDL    | Lab | VQ     | Result  | RL   | MDL  | Lab  | VQ     |  |
| 2-Methylnaphthalene          | 670          |            | 1,900   | 19.9   | 19.9    | 4.5  | U   | U      | 20.0   | 20.0    | 4.5  | U    | U      | 20.0   | 20.0 | 4.5    | U   | U      | 20.0    | 20.0 | 4.5  | U    | U      |  |
| Total LPAH                   | 5,200        |            | 29,000  | 19.9   |         |      | U   | U      | 20.0   |         |      | U    | U      | 20.0   |      |        | U   | U      | 18.8    |      |      | J    | J      |  |
| НРАН                         |              |            | l       |        |         |      |     | l      | l      |         |      |      | ı      | l      |      |        |     | 1      |         |      |      |      |        |  |
| Fluoranthene                 | 1,700        | 4,600      | 30,000  | 19.9   | 19.9    | 6.1  | U   | U      | 20.0   | 20.0    | 6.1  | U    | U      | 20.0   | 20.0 | 6.1    | U   | U      | 20.0    | 20.0 | 6.1  | U    | U      |  |
| Pyrene                       | 2,600        | 11,980     | 16,000  | 19.9   | 19.9    | 5.7  | U   | U      | 20.0   | 20.0    | 5.7  | U    | U      | 20.0   | 20.0 | 5.7    | U   | U      | 9.1     | 20.0 | 5.7  | J    | J      |  |
| Benz(a)anthracene            | 1,300        |            | 5,100   | 19.9   | 19.9    | 5.9  | U   | U      | 20.0   | 20.0    | 6.0  | U    | U      | 20.0   | 20.0 | 6.0    | U   | U      | 20.0    | 20.0 | 6.0  | U    | U      |  |
| Chrysene                     | 1,400        |            | 21,000  | 19.9   | 19.9    | 6.0  | U   | U      | 20.0   | 20.0    | 6.1  | U    | U      | 20.0   | 20.0 | 6.1    | U   | U      | 20.0    | 20.0 | 6.1  | U    | U      |  |
| Benzofluoranthenes (b, j ,k) | 3,200        |            | 9,900   | 39.8   | 39.8    | 20.9 | U   | U      | 40.0   | 40.0    | 21.0 | U    | U      | 40.0   | 40.0 | 21.0   | U   | U      | 40.0    | 40.0 | 21.0 | U    | U      |  |
| Benzo(a)pyrene               | 1,600        |            | 3,600   | 19.9   | 19.9    | 4.2  | U   | U      | 20.0   | 20.0    | 4.2  | U    | U      | 20.0   | 20.0 | 4.2    | U   | U      | 20.0    | 20.0 | 4.2  | U    | U      |  |
| Indeno(1,2,3-c,d)pyrene      | 600          |            | 4,400   | 19.9   | 19.9    | 14.6 | U   | U      | 20.0   | 20.0    | 14.6 | U    | U      | 20.0   | 20.0 | 14.6   | U   | U      | 20.0    | 20.0 | 14.7 | U    | U      |  |
| Dibenz(a,h)anthracene        | 230          |            | 1,900   | 19.9   | 19.9    | 17.2 | U   | U      | 20.0   | 20.0    | 17.2 | U    | U      | 20.0   | 20.0 | 17.2   | U   | U      | 20.0    | 20.0 | 17.2 | U    | U      |  |
| Benzo(g,h,i)perylene         | 670          |            | 3,200   | 19.9   | 19.9    | 13.5 | U   | U      | 20.0   | 20.0    | 13.6 | U    | U      | 20.0   | 20.0 | 13.6   | U   | U      | 20.0    | 20.0 | 13.6 | U    | U      |  |
| Total HPAH                   | 12,000       |            | 69,000  | 39.8   |         |      | U   | U      | 40.0   |         |      | U    | U      | 40.0   |      |        | U   | U      | 9.1     |      |      | J    | J      |  |
| CHLORINATED HYDROCARBONS     | ω (μg/kg dry | weight)    |         |        |         |      |     |        |        |         |      |      |        |        |      |        |     |        |         |      |      |      |        |  |
| 1,4-Dichlorobenzene          | 110          |            | 120     | 0.7    | 5.0     | 0.6  | J   | J      | 5.0    | 5.0     | 0.6  | U    | U      | 5.0    | 5.0  | 0.6    | U   | U      | 0.9     | 5.0  | 0.6  | J    | J      |  |
| 1,2-Dichlorobenzene          | 35           |            | 110     | 5.0    | 5.0     | 0.7  | U   | U      | 5.0    | 5.0     | 0.7  | U    | U      | 5.0    | 5.0  | 0.7    | U   | U      | 0.8     | 5.0  | 0.7  | J    | J      |  |
| 1,2,4-Trichlorobenzene       | 31           |            | 64      | 5.0    | 5.0     | 2.7  | U   | U      | 5.0    | 5.0     | 2.7  | U    | U      | 5.0    | 5.0  | 2.7    | U   | U      | 5.0     | 5.0  | 2.7  | U    | U      |  |
| Hexachlorobenzene (HCB)      | 22           | 168        | 230     | 5.0    | 5.0     | 0.7  | U   | U      | 5.0    | 5.0     | 0.7  | U    | U      | 5.0    | 5.0  | 0.7    | U   | U      | 5.0     | 5.0  | 0.7  | U    | U      |  |
| PHTHALATES (μg/kg dry weight | :)           |            |         |        |         |      |     |        |        |         |      |      |        |        |      |        |     |        |         |      |      |      |        |  |
| Dimethyl phthalate           | 71           |            | 1,400   | 19.9   | 19.9    | 4.4  | U   | U      | 20.0   | 20.0    | 4.4  | U    | U      | 20.0   | 20.0 | 4.4    | U   | U      | 20.0    | 20.0 | 4.4  | U    | U      |  |
| Diethyl phthalate            | 200          |            | 1,200   | 50.0   | 50.0    | 19.7 | U   | U      | 27.9   | 50.0    | 19.7 | J    | U      | 32.3   | 49.9 | 19.7   | J   | U      | 50.0    | 50.0 | 19.7 | U    | U      |  |
| Di-n-butyl phthalate         | 1,400        |            | 5,100   | 19.9   | 19.9    | 5.6  | U   | U      | 20.0   | 20.0    | 5.6  | U    | U      | 20.0   | 20.0 | 5.6    | U   | U      | 20.0    | 20.0 | 5.6  | U    | U      |  |
| Butyl benzyl phthalate       | 63           |            | 970     | 19.9   | 19.9    | 9.4  | U   | U      | 20.0   | 20.0    | 9.4  | U    | U      | 20.0   | 20.0 | 9.4    | U   | U      | 20.0    | 20.0 | 9.4  | U    | U      |  |
| Bis(2-ethylhexyl) phthalate  | 1,300        |            | 8,300   | 49.8   | 49.8    | 14.0 | U   | U      | 50.0   | 50.0    | 14.1 | U    | U      | 49.9   | 49.9 | 14.1   | U   | U      | 50.0    | 50.0 | 14.1 | U    | U      |  |
| Di-n-octyl phthalate         | 6,200        |            | 6,200   | 19.9   | 19.9    | 4.4  | U   | U      | 20.0   | 20.0    | 4.4  | U    | U      | 20.0   | 20.0 | 4.4    | U   | U      | 20.0    | 20.0 | 4.4  | U    | U      |  |
| PHENOLS (μg/kg dry weight)   |              |            |         |        |         |      |     |        |        |         |      |      |        |        |      |        |     |        |         |      |      |      |        |  |
| Phenol                       | 420          |            | 1,200   | 5.1    | 19.9    | 4.4  | J   | J      | 9.4    | 20.0    | 4.4  | J    | J      | 20.0   | 20.0 | 4.4    | U   | U      | 20.0    | 20.0 | 4.4  | U    | U      |  |
| 2-Methylphenol               | 63           |            | 77      | 19.9   | 19.9    | 6.6  | U   | U      | 20.0   | 20.0    | 6.7  | U    | U      | 20.0   | 20.0 | 6.7    | U   | U      | 20.0    | 20.0 | 6.7  | U    | U      |  |
| 4-Methylphenol               | 670          |            | 3,600   | 19.9   | 19.9    | 7.4  | U   | U      | 20.0   | 20.0    | 7.4  | U    | U      | 20.0   | 20.0 | 7.4    | U   | U      | 20.0    | 20.0 | 7.4  | U    | U      |  |
| 2,4-Dimethylphenol           | 29           |            | 210     | 19.9   | 19.9    | 2.2  | U   | U      | 19.9   | 19.9    | 2.2  | U    | U      | 19.9   | 19.9 | 2.2    | U   | U      | 20.0    | 20.0 | 2.2  | U    | U      |  |
| Pentachlorophenol            | 400          | 504        | 690     | 99.6   | 99.6    | 31.1 | U   | UJ     | 100.0  | 100     | 31.2 | U    | UJ     | 99.9   | 99.9 | 31.2   | U   | UJ     | 100     | 100  | 31.3 | U    | UJ     |  |

Table 7. Sediment Conventionals and Analytical COC Results compared to DMMP Guidelines

| Table 7. Sediment Conventions  |              | Marine Gu         |       |        | DMMU-01 |      |     |        |        | DM   |      | D    | MMU-03 |        |      | DMMU-04 |     |        |        |      |      |      |        |
|--------------------------------|--------------|-------------------|-------|--------|---------|------|-----|--------|--------|------|------|------|--------|--------|------|---------|-----|--------|--------|------|------|------|--------|
| Parameter                      |              |                   |       |        |         |      | Qua | lifier |        |      |      | Qual | lifier |        |      |         | Qua | lifier |        |      |      | Qual | lifier |
|                                | SL           | ВТ                | ML    | Result | RL      | MDL  | Lab | vq     | Result | RL   | MDL  | Lab  | VQ     | Result | RL   | MDL     | Lab | VQ     | Result | RL   | MDL  | Lab  | VQ     |
| MISCELLANEOUS EXTRACTABLE      | S (μg/kg dry | weight)           |       |        |         |      |     |        |        |      |      |      |        |        |      |         |     |        |        |      |      |      |        |
| Benzyl alcohol                 | 57           |                   | 870   | 19.9   | 19.9    | 16.2 | U   | U      | 20.0   | 20.0 | 16.3 | U    | U      | 20.0   | 20.0 | 16.2    | U   | U      | 20.0   | 20.0 | 16.3 | U    | U      |
| Benzoic acid                   | 650          |                   | 760   | 199    | 199     | 38.9 | U   | UJ     | 49.1   | 200  | 39.0 | J    | J      | 200    | 200  | 39.0    | U   | UJ     | 200    | 200  | 39.1 | U    | UJ     |
| Dibenzofuran                   | 540          |                   | 1,700 | 19.9   | 19.9    | 14.1 | U   | U      | 20.0   | 20.0 | 14.1 | U    | U      | 20.0   | 20.0 | 14.1    | U   | U      | 20.0   | 20.0 | 14.1 | U    | U      |
| Hexachlorobutadiene            | 11           |                   | 270   | 5.0    | 5.0     | 0.7  | J   | U      | 5.0    | 5.0  | 0.7  | U    | U      | 5.0    | 5.0  | 0.7     | J   | U      | 0.8    | 5.0  | 0.7  | J    | J      |
| N-Nitrosodiphenylamine         | 28           |                   | 130   | 5.0    | 5.0     | 1.3  | U   | U      | 5.0    | 5.0  | 1.3  | U    | U      | 5.0    | 5.0  | 1.3     | U   | U      | 5.0    | 5.0  | 1.3  | U    | U      |
| PESTICIDES(1) & PCBs (μg/kg dr | y weight)    |                   |       |        |         |      |     | _      |        |      |      |      |        |        |      |         |     |        |        |      |      |      |        |
| 4,4'-DDD                       | 16           |                   |       | 0.61   | 5.3     | 0.61 | U   | U      | 0.58   | 5.0  | 0.58 | U    | U      | 0.028  | 0.25 | 0.028   | U   | U      | 0.65   | 5.6  | 0.65 | U    | U      |
| 4,4'-DDE                       | 9            |                   |       | 0.99   | 5.3     | 0.99 | U   | U      | 0.93   | 5.0  | 0.93 | U    | U      | 0.046  | 0.25 | 0.046   | U   | U      | 1.0    | 5.6  | 1.0  | U F1 | U      |
| 4,4'-DDT                       | 12           |                   |       | 0.99   | 5.3     | 0.99 | U   | U      | 0.93   | 5.0  | 0.93 | U    | U      | 0.046  | 0.25 | 0.046   | U   | U      | 1.0    | 5.6  | 1.0  | U    | U      |
| Total DDT                      |              | 50                | 69    | 0.99   |         |      | U   | U      | 0.93   |      |      | U    | U      | 0.046  |      |         | U   | U      | 1.0    |      |      | F1 U | U      |
| Aldrin                         | 9.5          |                   |       | 1.0    | 8.0     | 1.0  | U   | U      | 0.95   | 7.5  | 0.95 | U    | U      | 0.047  | 0.37 | 0.047   | U   | U      | 1.1    | 8.4  | 1.1  | U    | U      |
| cis-Chlordane                  |              |                   |       | 2.0    | 5.3     | 2.0  | J   | U      | 1.9    | 5.0  | 1.9  | U    | U      | 0.093  | 0.25 | 0.093   | J   | U      | 2.1    | 5.6  | 2.1  | U F1 | U      |
| cis-Nonachlor                  |              |                   |       | 2.3    | 13      | 2.3  | U   | U      | 2.1    | 13   | 2.1  | U    | U      | 0.11   | 0.62 | 0.11    | U   | U      | 2.4    | 14   | 2.4  | U    | U      |
| Oxychlordane                   |              |                   |       | 2.1    | 11      | 2.1  | U   | U      | 1.9    | 10   | 1.9  | U    | U      | 0.095  | 0.50 | 0.095   | U   | U      | 2.2    | 11   | 2.2  | U    | U      |
| trans-Chlordane                |              |                   |       | 0.85   | 8.0     | 0.85 | U   | U      | 0.8    | 7.5  | 0.8  | U    | U      | 0.040  | 0.37 | 0.040   | U   | U      | 0.90   | 8.4  | 0.90 | U    | U      |
| trans-Nonachlor                |              |                   |       | 2.3    | 11      | 2.3  | U   | U      | 2.1    | 10   | 2.1  | U    | U      | 0.11   | 0.50 | 0.11    | U   | U      | 2.4    | 11   | 2.4  | U    | U      |
| Total Chlordane                | 2.8          | 37                |       | 2.3    |         |      | U   | U      | 2.1    |      |      | U    | U      | 0.11   |      |         | U   | U      | 2.4    |      |      | U    | U      |
| Dieldrin                       | 1.9          |                   | 1700  | 0.93   | 5.3     | 0.93 | U   | U      | 0.88   | 5.0  | 0.88 | U    | U      | 0.043  | 0.25 | 0.043   | U   | U      | 0.98   | 5.6  | 0.98 | U F1 | U      |
| Heptachlor                     | 1.5          |                   | 270   | 0.51   | 8.0     | 0.51 | U   | U      | 0.48   | 7.5  | 0.48 | U    | U      | 0.024  | 0.37 | 0.024   | U   | U      | 0.53   | 8.4  | 0.53 | U    | U      |
| PCB-aroclor 1016               |              |                   |       | 27     | 27      | 9.9  | U   | U      | 24     | 24   | 8.8  | U    | U      | 25     | 25   | 9.1     | U   | U      | 27     | 27   | 9.9  | U    | U      |
| PCB-aroclor 1221               |              |                   |       | 27     | 27      | 16   | U   | U      | 24     | 24   | 14   | U    | U      | 25     | 25   | 15      | U   | U      | 27     | 27   | 16   | U    | U      |
| PCB-aroclor 1232               |              |                   |       | 27     | 27      | 6.5  | U   | U      | 24     | 24   | 5.8  | U    | U      | 25     | 25   | 6.0     | U   | U      | 27     | 27   | 6.6  | U    | U      |
| PCB-aroclor 1242               |              |                   |       | 27     | 27      | 11   | U   | U      | 24     | 24   | 9.5  | U    | U      | 25     | 25   | 9.8     | U   | U      | 27     | 27   | 11   | U    | U      |
| PCB-aroclor 1248               |              |                   |       | 27     | 27      | 9.3  | U   | U      | 24     | 24   | 8.3  | U    | U      | 25     | 25   | 8.6     | U   | U      | 27     | 27   | 9.4  | U    | U      |
| PCB-aroclor 1254               |              |                   |       | 27     | 27      | 12   | U   | U      | 24     | 24   | 11   | U    | U      | 25     | 25   | 11      | U   | U      | 27     | 27   | 12   | U    | U      |
| PCB-aroclor 1260               |              |                   |       | 27     | 27      | 9.9  | U   | U      | 24     | 24   | 8.8  | U    | U      | 25     | 25   | 9.1     | U   | U      | 27     | 27   | 9.9  | U    | U      |
| Total PCBs (Aroclors)          | 130          | 38 <sup>(2)</sup> | 3,100 | 27     |         |      | U   | U      | 24     |      |      | U    | U      | 25     |      |         | U   | U      | 27     |      |      | U    | U      |

<sup>(1)</sup> Non-detect results reported at MDL

<sup>(2)</sup> This value is normalized to TOC and expressed in mg/kg carbon

Table 8. COC Analysis Results Compared to Marine Sediment AET

| Parameter                        | Marine Sediment<br>AETs |       | DMMU-01 |           |    | DMMU-02 |           |    | DMMU-03 |           |    | DMMU-04 |           |    |
|----------------------------------|-------------------------|-------|---------|-----------|----|---------|-----------|----|---------|-----------|----|---------|-----------|----|
|                                  |                         |       | Result  | Qualifier |    |         | Qualifier |    |         | Qualifier |    |         | Qualifier |    |
|                                  | sco                     | CSL   |         | Lab       | VQ | Result  | Lab       | VQ | Result  | Lab       | VQ | Result  | Lab       | VQ |
| Total organic carbon (% decimal) |                         |       | 0.0045  |           |    | 0.0013  | J         | U  | 0.0012  | J         | U  | 0.0028  |           | U  |
| METALS (mg/kg dry weight)        |                         |       |         |           |    |         |           |    |         |           |    |         |           |    |
| Arsenic                          | 57                      | 93    | 3.8     |           |    | 3.3     |           |    | 2.4     |           |    | 4.5     |           |    |
| Cadmium                          | 5.1                     | 6.7   | 0.054   | J         | J  | 0.034   | J         | J  | 0.30    | U         | U  | 0.088   | J         | J  |
| Chromium                         | 260                     | 270   | 20      |           |    | 21      |           |    | 16      |           |    | 25      |           |    |
| Copper                           | 390                     | 390   | 9.0     |           |    | 6.4     |           |    | 5.3     |           |    | 8.1     |           |    |
| Lead                             | 450                     | 530   | 2.1     |           |    | 1.6     |           |    | 1.6     |           |    | 2.2     |           |    |
| Mercury                          | 0.41                    | 0.59  | 0.014   | J         | J  | 0.033   | U         | U  | 0.027   | U         | U  | 0.012   | J         | J  |
| Silver                           | 6.1                     | 6.1   | 0.028   | J         | J  | 0.013   | J         | J  | 0.075   | U         | U  | 0.021   | J         | J  |
| Zinc                             | 410                     | 960   | 27      |           |    | 25      |           |    | 24      |           |    | 32      |           |    |
| ORGANICS                         |                         |       |         |           |    |         |           |    |         |           |    |         |           |    |
| PAHs (μg/kg dry weight)          |                         |       |         |           |    |         |           |    |         |           |    |         |           |    |
| LPAH                             |                         |       |         |           |    |         |           |    |         |           |    |         |           |    |
| Naphthalene                      | 2,100                   | 2,100 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Acenaphthylene                   | 1,300                   | 1,300 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Acenaphthene                     | 500                     | 500   | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 6.4     | J         | J  |
| Fluorene                         | 540                     | 540   | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Phenanthrene                     | 1,500                   | 1,500 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Anthracene                       | 960                     | 960   | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 12.4    | J         | J  |
| 2-Methylnaphthalene              | 670                     | 670   | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Total LPAH                       | 5,200                   | 5,200 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 18.8    | J         | J  |
| НРАН                             |                         |       |         |           |    |         |           |    |         |           |    | 1       |           |    |
| Fluoranthene                     | 1,700                   | 2,500 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | C         | U  | 20.0    | U         | U  |
| Pyrene                           | 2,600                   | 3,300 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 9.1     | J         | J  |
| Benz(a)anthracene                | 1,300                   | 1,600 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Chrysene                         | 1,400                   | 2,800 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Benzofluoranthenes (b, j ,k)     | 3,200                   | 3,600 | 39.8    | U         | U  | 40.0    | U         | U  | 40.0    | U         | U  | 40.0    | U         | U  |
| Benzo(a)pyrene                   | 1,600                   | 1,600 | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Indeno(1,2,3-c,d)pyrene          | 600                     | 690   | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Dibenz(a,h)anthracene            | 230                     | 230   | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |

Table 8. COC Analysis Results Compared to Marine Sediment AET

|                               | Marine Sediment |        | DMMU-01 |           |    | DMMU-02 |           |    | DMMU-03 |           |    | DMMU-04 |           |    |
|-------------------------------|-----------------|--------|---------|-----------|----|---------|-----------|----|---------|-----------|----|---------|-----------|----|
| Parameter                     | AETs            | CSL    | Result  | Qualifier |    |         | Qualifier |    |         | Qualifier |    |         | Qualifier |    |
|                               | sco             |        |         | Lab       | VQ | Result  | Lab       | VQ | Result  | Lab       | VQ | Result  | Lab       | VQ |
| Benzo(g,h,i)perylene          | 670             | 720    | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Total HPAH                    | 12,000          | 17,000 | 39.8    | U         | U  | 40.0    | U         | U  | 40.0    | U         | U  | 9.1     | J         | J  |
| CHLORINATED HYDROCARBONS (µ   | ıg/kg dry we    | ight)  |         |           |    |         |           |    |         |           |    |         |           |    |
| 1,4-Dichlorobenzene           | 110             | 110    | 0.7     | J         | J  | 5.0     | U         | U  | 5.0     | U         | U  | 0.9     | J         | J  |
| 1,2-Dichlorobenzene           | 35              | 50     | 5.0     | U         | U  | 5.0     | U         | U  | 5.0     | U         | U  | 0.8     | J         | J  |
| 1,2,4-Trichlorobenzene        | 31              | 51     | 5.0     | U         | U  |
| Hexachlorobenzene (HCB)       | 22              | 70     | 5.0     | U         | U  |
| PHTHALATES (μg/kg dry weight) |                 |        |         |           |    |         |           |    |         |           |    |         |           |    |
| Dimethyl phthalate            | 71              | 160    | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Diethyl phthalate             | 200             | >1,200 | 50.0    | U         | U  | 27.9    | J         | U  | 32.3    | J         | U  | 50.0    | U         | U  |
| Di-n-butyl phthalate          | 1,400           | 1,400  | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Butyl benzyl phthalate        | 63              | 900    | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Bis(2-ethylhexyl) phthalate   | 1,300           | 1,900  | 49.8    | U         | U  | 50.0    | U         | U  | 49.9    | U         | U  | 50.0    | U         | U  |
| Di-n-octyl phthalate          | 6,200           | 6,200  | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| PHENOLS (μg/kg dry weight)    |                 |        |         |           |    |         |           |    |         |           |    |         |           |    |
| Phenol                        | 420             | 1,200  | 5.1     | J         | J  | 9.4     | J         | J  | 20.0    | U         | U  | 20.0    | U         | U  |
| 2-Methylphenol                | 63              | 63     | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| 4-Methylphenol                | 670             | 670    | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| 2,4-Dimethylphenol            | 29              | 29     | 19.9    | U         | U  | 19.9    | U         | U  | 19.9    | U         | U  | 20.0    | U         | U  |
| Pentachlorophenol             | 360             | 690    | 99.6    | U         | UJ | 100.0   | U         | UJ | 99.9    | U         | UJ | 100     | U         | UJ |
| MISCELLANEOUS EXTRACTABLES (  | μg/kg dry w     | eight) |         |           |    |         |           |    |         |           |    |         |           |    |
| Benzyl alcohol                | 57              | 73     | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Benzoic acid                  | 650             | 650    | 199     | U         | UJ | 49.1    | J         | J  | 200     | U         | UJ | 200     | U         | UJ |
| Dibenzofuran                  | 540             | 540    | 19.9    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  | 20.0    | U         | U  |
| Hexachlorobutadiene           | 11              | 120    | 5.0     | U         | U  | 5.0     | U         | U  | 5.0     | U         | U  | 0.8     | J         | J  |
| N-Nitrosodiphenylamine        | 28              | 40     | 5.0     | U         | U  |
| PCBs (μg/kg dry weight)       |                 |        |         |           |    |         |           |    |         |           |    |         |           |    |
| Total PCBs (Aroclors)         | 130             | 1000   | 27      | U         | U  | 24      | U         | U  | 25      | U         | U  | 27      | U         | U  |

Swinomish Federal Navigation Channel Dredged Material Characterization Report Skagit County, WA

# **FIGURES**

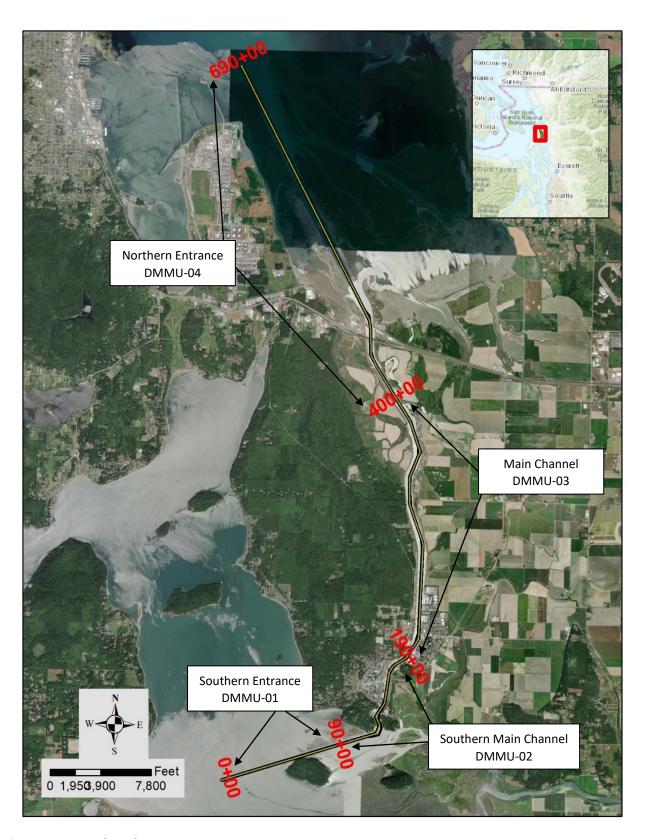



Figure 1. Proposed Dredge Area




Figure 2. Southern Entrance Overview DMMU-01

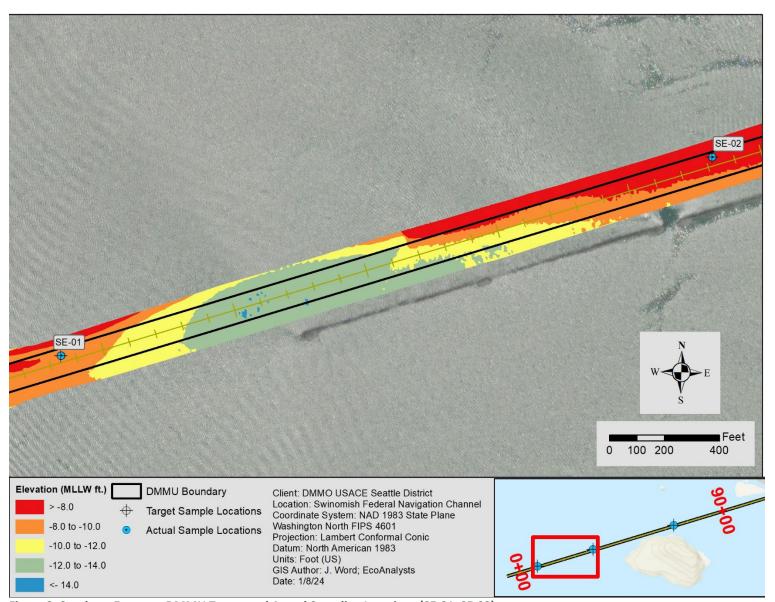



Figure 3. Southern Entrance DMMU Target and Actual Sampling Locations (SE-01, SE-02)

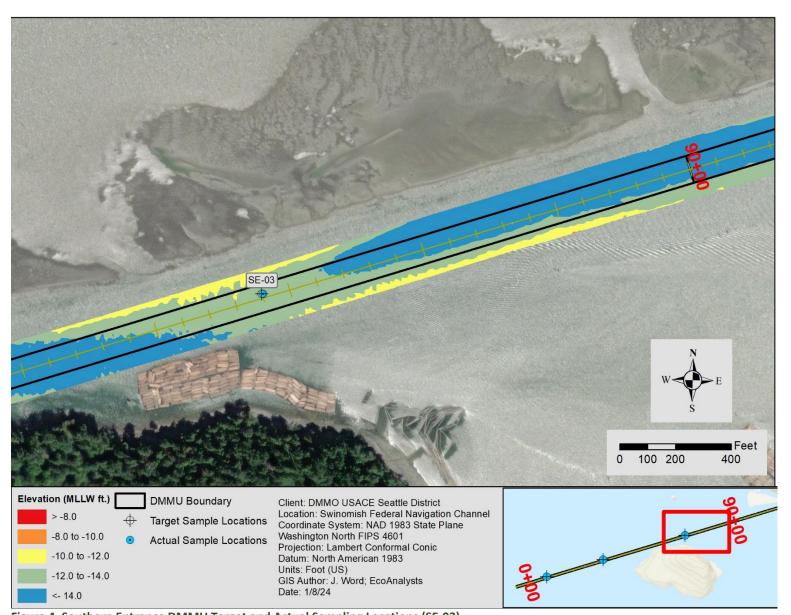



Figure 4. Southern Entrance DMMU Target and Actual Sampling Locations (SE-03)



Figure 5. Southern Main Channel Overview DMMU-02

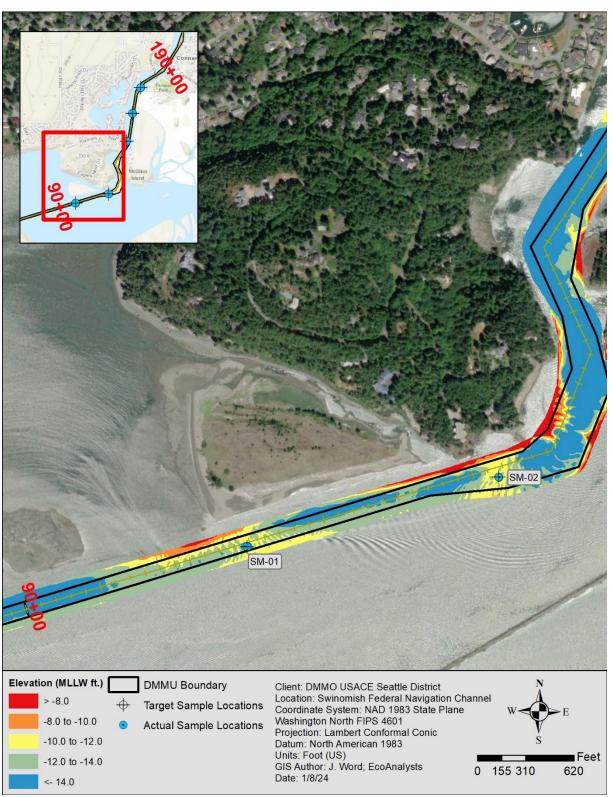



Figure 6. Southern Main Channel Target and Actual Sampling Locations (SM-01, SM-02)

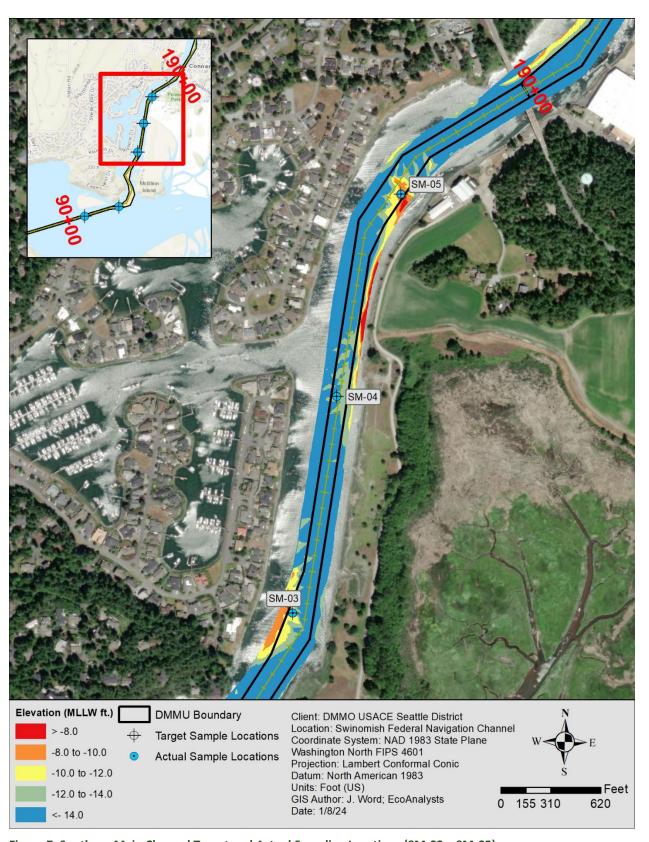



Figure 7. Southern Main Channel Target and Actual Sampling Locations (SM-03 – SM-05)

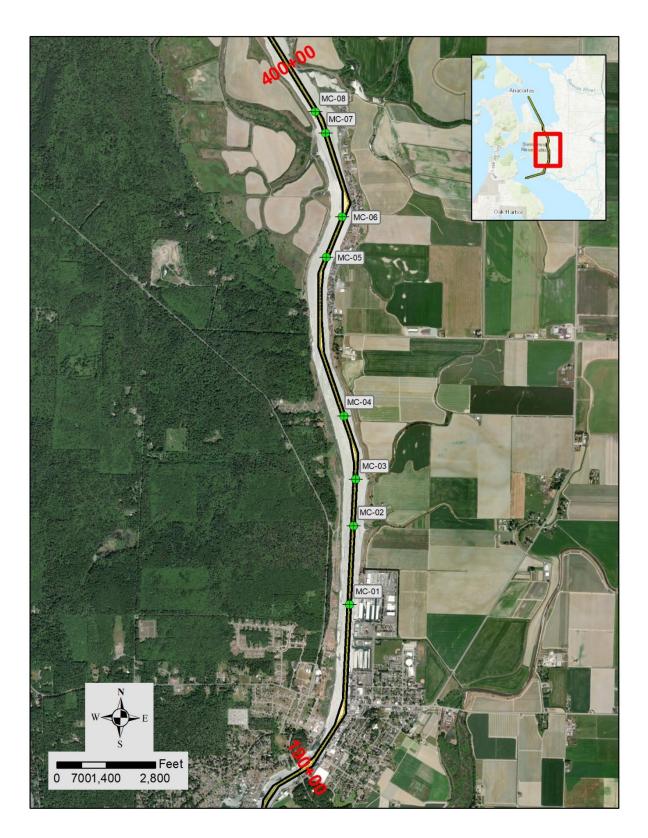



Figure 8. Main Channel Overview DMMU-03

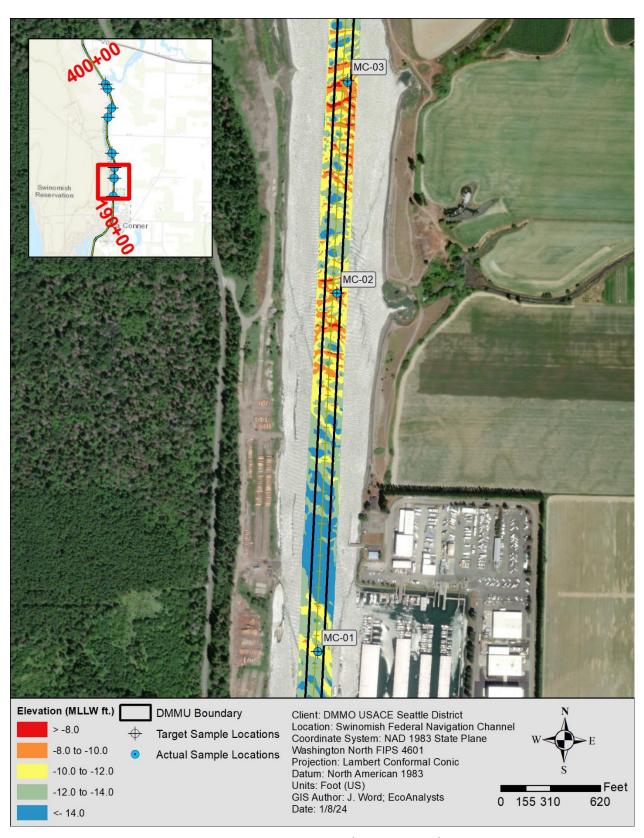



Figure 9. Main Channel Target and Actual Sampling Locations (MC-01 - MC-03)

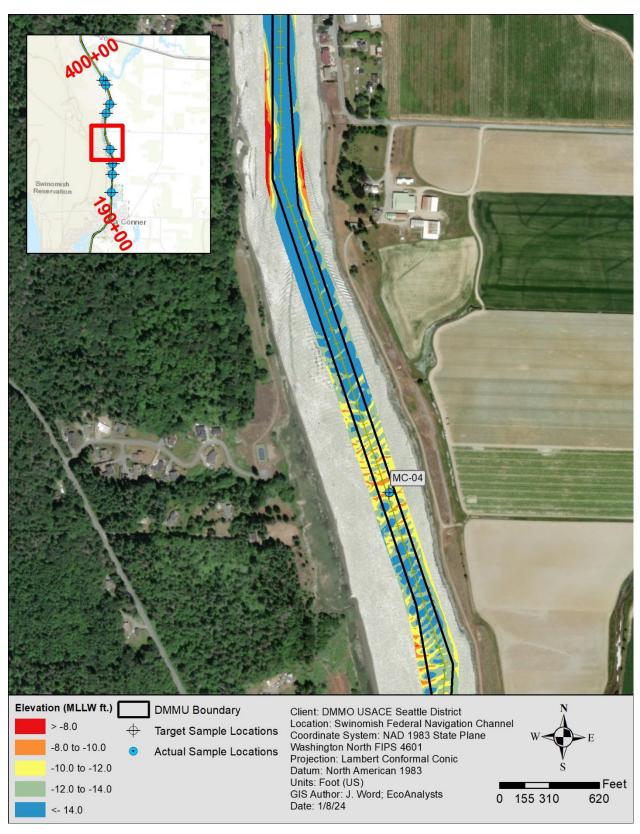



Figure 10. Main Channel Target and Actual Sampling Locations (MC-04)

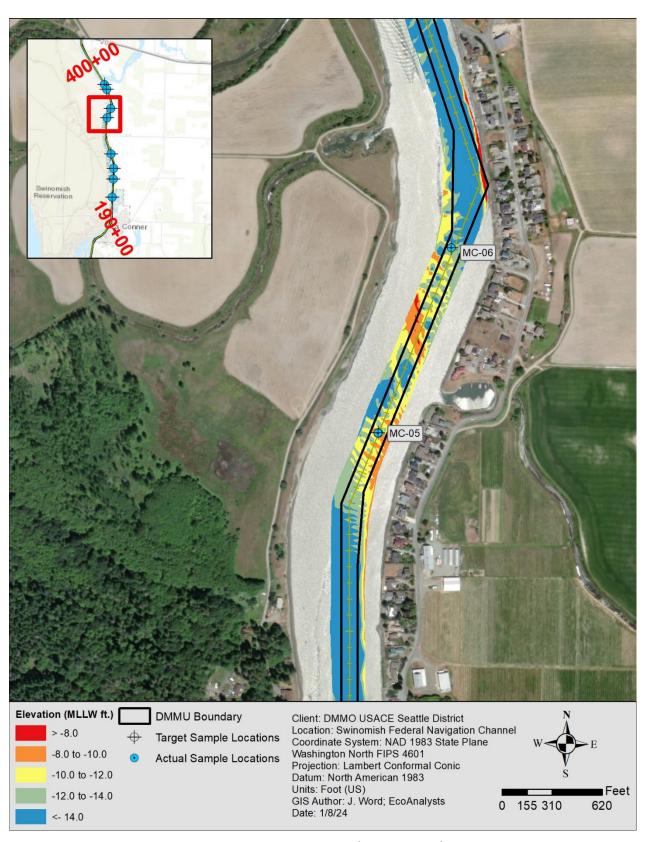



Figure 11. Main Channel Target and Actual Sampling Locations (MC-05, MC-06)

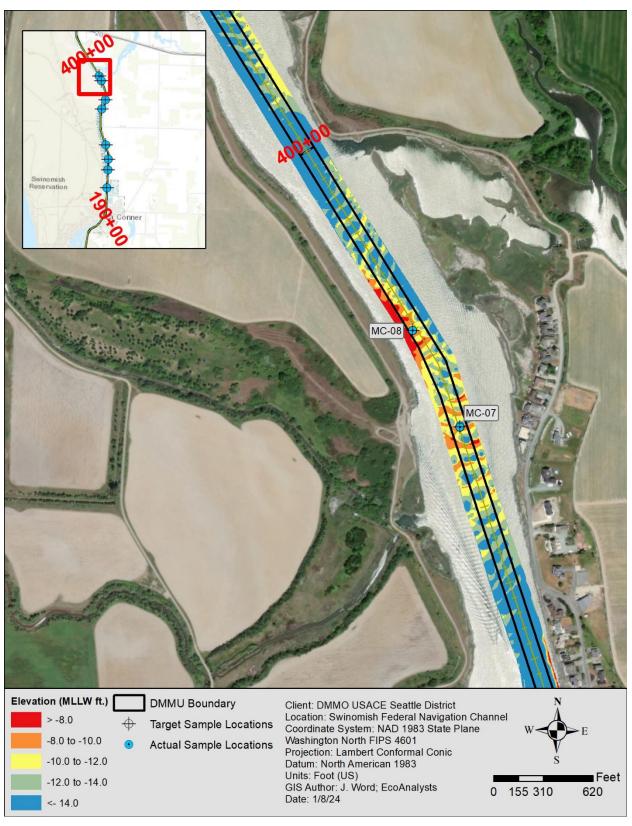



Figure 12. Main Channel Target and Actual Sampling Locations (MC-07, MC-08)



Figure 13. North Entrance Overview DMMU-04

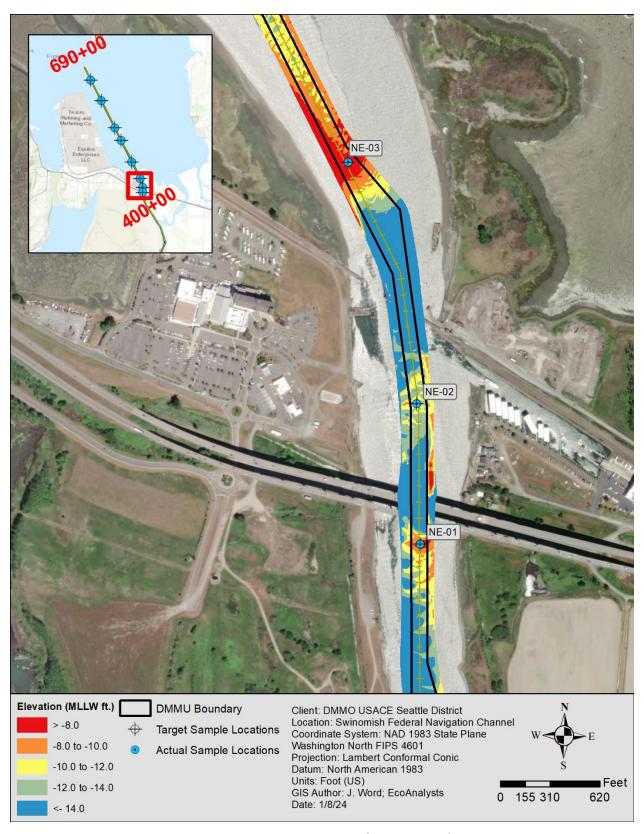



Figure 14. North Entrance Target and Actual Sampling Locations (NE-01 - NE-03)

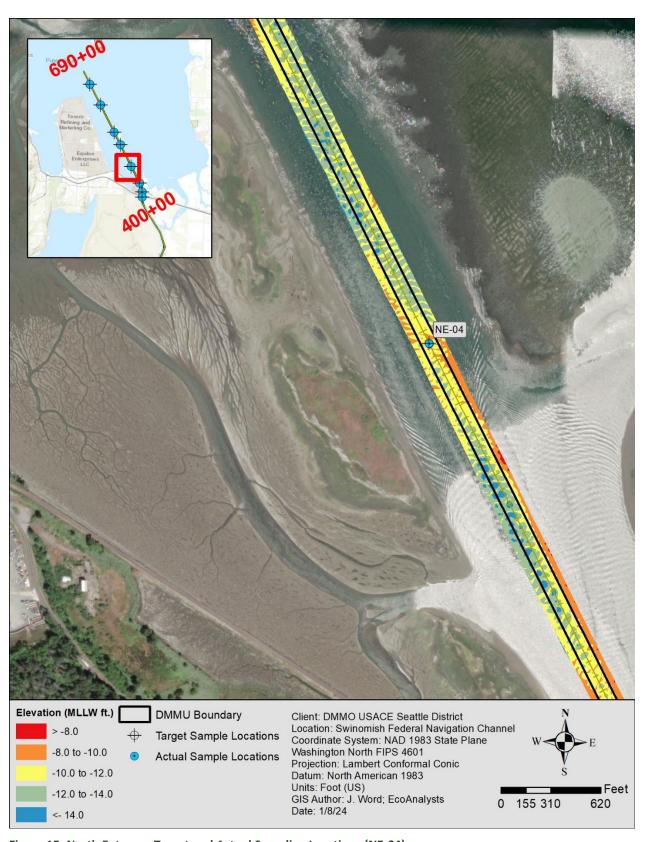



Figure 15. North Entrance Target and Actual Sampling Locations (NE-04)

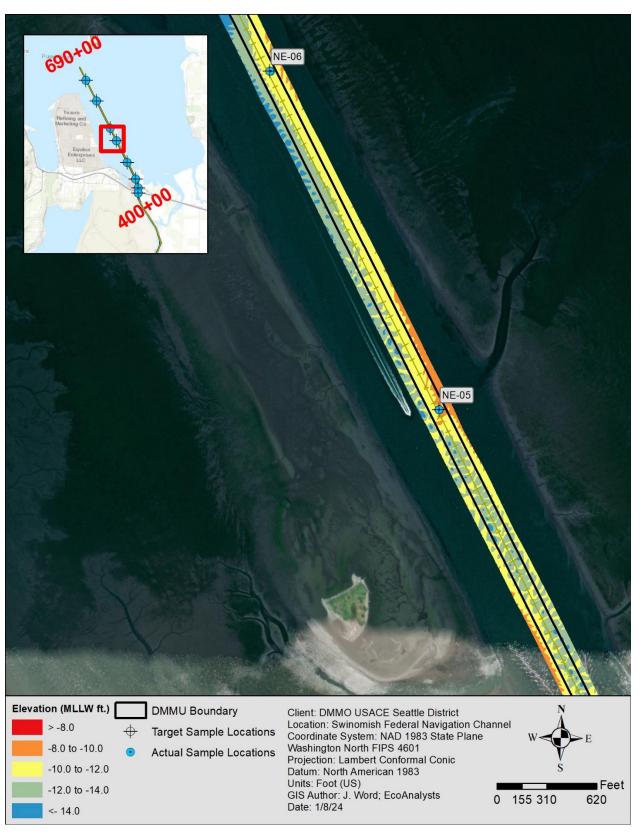



Figure 16. North Entrance Target and Actual Sampling Locations (NE-05, NE-06)

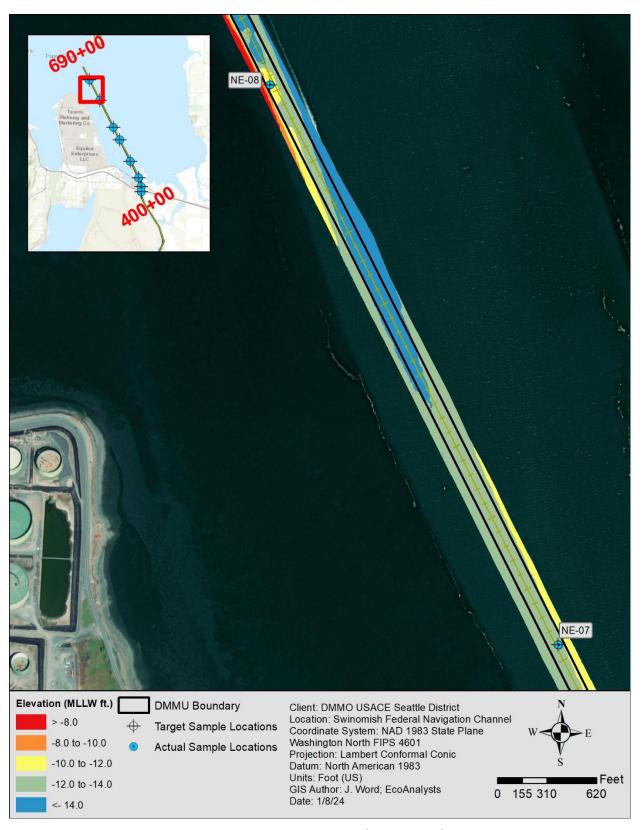



Figure 17. North Entrance Target and Actual Sampling Locations (NE-07, NE-08)